

92 UPB - INVESTIGACIÓN & DESARROLLO, No. 14, Vol. 2: 92 – 105 (2014)
DOI: 10.23881/idupbo.014.2-7i

 INVESTIGACIÓN & DESARROLLO, No. 15, Vol. 2: 92 – 105 (2014)
ISSN 2518-4431

VIRMS: A VEHICLE INFORMATION AND ROAD MONITORING SYSTEM

VIRMS: UN SISTEMA DE INFORMACIÓN VEHICULAR Y MONITOREO DE CARRETERAS

Fabio Arnéz and Alex Villazón

Centro de Investigaciones de Nuevas Tecnologías Informáticas – CINTI

 Universidad Privada Boliviana

avillazon@upb.edu
(Recibido el 01 de noviembre 2014, aceptado para publicación el 17 de noviembre 2014)

ABSTRACT

Intelligent Transport Systems (ITS) are emerging technologies for building collaborative vehicular networks to increase

road safety and to improve driver’s experience. Unfortunately these technologies require heavy infrastructure to be

deployed inside and outside the vehicle that is difficult to extend. In this article we present VIRMS (Vehicle

Information and Road Monitoring System), an ITS that is based on low-cost and small footprint client and server

infrastructure that was designed to increase vehicular security and reduce accident rates along highways. The VIRMS

remote client device is an on board vehicle electronic device that gathers data from sensors and processes the collected

data that is sent to the VIRMS server in order to keep drivers informed with precise context information through the

detection and identification of events (accidents, traffic jams, bad weather conditions, etc.) along the roads. A prototype

running tests on Bolivian highways show that VIRMS can give a technological answer to a real problem where road

safety is one of the highest issues and cause of mortality.

RESUMEN

Los Sistemas de Transporte Inteligentes (Intelligent Transport Systems - ITS) son tecnologías emergentes para el

desarrollo de sistemas colaborativos vehiculares en red, que permiten mejorar la seguridad y la experiencia de usuario

de los conductores. Sin embargo estas tecnologías requieren el despliegue de infraestructuras pesadas, costosas y poco

adaptables dentro y fuera de los vehículos. En este artículo presentamos VIRMS (Vehicle Information and Road

Monitoring System), un ITS basado en una infraestructura cliente-servidor de bajo costo y ligera que fue diseñada para

mejorar la seguridad vehicular y reducir la tasa de accidentes en las carreteras. El cliente remoto VIRMS es un

dispositivo vehicular embebido que recolecta, procesa y envía información de sensores hacia el servidor VIRMS para

mantener informado al conductor con datos contextuales detectando e identificando eventos en las carreteras (e.g.

accidentes, embotellamientos, bloqueos, etc.). El prototipo de VIRMS fue validado en carreteras bolivianas, mostrando

que VIRMS puede ser una respuesta tecnológica al problema de seguridad vehicular, que es uno de los mayores

problemas y causas de mortandad.

Keywords: Intelligent Transportation System, Embedded System, Electronic Vehicle Device, Real-Time Operating

System, Communication Protocol.

Palabras Clave: Sistemas de Transporte Inteligentes, Sistema Embebido, Dispositivos Electrónicos Vehicular, Sistema

Operativo Tiempo-Real, Protocolo de Comunicación.

1. INTRODUCTION

Traffic accidents are a major cause of deaths and injuries worldwide and particularly in countries where there are

deficiencies in the infrastructure, high-degree of misbehavior of drivers, and a poor o no technological support on the

roads. In the case of Bolivia, in the past 10 years, the rate of accidents deaths has doubled, especially on the main roads

of the country [1]. This increase is mainly due to the lack of a control system for penalizing perpetrated excesses and

infringements and also the lack of efficient emergency attention services.

Intelligent Transportation Systems (ITS) are emerging technologies to build collaborative vehicular networks to

increase road safety, where it is expected that applications of these systems allow communication of different electronic

devices usually installed aboard of the vehicles to improve driver’s experience [2]. According to their functionality,

ITS applications have been classified into three main categories: safety, efficiency and comfort. Safety applications aim

at reducing the severity and mortality risk of car accidents; efficiency applications intend to manage traffic flow, vehicle

control and road monitoring; and comfort applications aim at providing entertainment and contextual information to

passenger. Our research focuses on safety applications through the development of custom hardware and software.

Regarding vehicle’s communication to the outside world, the communication mode is divided into two types: Vehicle-

to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communications. The de-facto standard for V2V communication,

mailto:avillazon@upb.edu

VIRMS: A VEHICLE INFORMATION AND ROAD MONITORING SYSTEM

UPB - INVESTIGACIÓN & DESARROLLO, No. 14, Vol. 2: 92 – 105 (2014) 93

the IEEE 802.11p
1
, adds wireless access in vehicular environments following the vehicular ad-hoc network (VANET)

approach. However, IEEE 802.11p suffers from scalability issues, unbounded delays and short radio range that

unleashes in the lack of Quality of Service (QoS) guarantees [3], which limits its applicability for V2I communications.

These limitations have motivated the recent increasing interest in cellular network infrastructure communication

technologies like Universal Mobile Telecommunications System (UMTS) and Long Term Evolution (LTE) as a

promising approach for V2I communication.

In this article we describe VIRMS (Vehicle Information and Road Monitoring System) a safety-oriented ITS. VIRMS

wraps inside advanced electronics technology and uses existing telephony network to achieve V2I communication. It

contains components of software and hardware that allows collecting, process, store and retrieve accurate and relevant

information to meet the safety needs of drivers along the roads. In addition, it can assist emergency services with rescue

institutions or the highway patrol to control possible excesses and infringements from drivers. In this article, we focus

on describing the VIRMS Remote Client’s hardware and software components. The VIRMS Remote Client

implementation is compact and inexpensive because it uses conventional mobile networks for information exchange

and is based on Embedded Electronic Systems for data processing aboard the vehicle. The contribution of this article is

threefold:

 We present an ITS based on hardware and software components with a small footprint and low-cost.

 The ITS uses existing mobile phone network with low bandwidth requirements.

 A working prototype showing the feasibility of the approach that was tested in Bolivian roads.

The rest of this article is structured as follows: Section 2 depicts the overall VIRMS architecture. The description of

both hardware and software components of VIRMS Remote Client are presented Section 3. Section 4 presents the

implementation details and experimental results of the VIRMS prototype, whereas Section 5 discusses advantages and

disadvantages of VIRMS. Related work is presented in Section 6. Section 7 concludes the article.

2. VIRMS ARCHITECTURE

VIRMS follows a client-server architecture, where the clients are embedded systems deployed in vehicles and

connected to the server through a cellular network over the Internet. The onboard VIRMS Remote Client comprises

hardware and software to collect information through different sensors and geo-location data through a GPS antenna,

and delivers context information to the VIRMS Central server. The server exchanges information with all deployed

VIRMS Remote clients, to keep users (i.e. drivers) informed with relevant context information. Figure 1 depicts the

VIRMS ITS architecture showing the two subsystems.

Figure 1 - VIRMS ITS Architecture.

The VIRMS Remote Client consists of an advanced embedded electronic system whose functions are to collect,

process, store and retrieve accurate and relevant information to satisfy the driver’s needs throughout the country roads.

1 An approved amendment to the IEEE 802.11 standard to add wireless access in vehicular environment

[http://standards.ieee.org/findstds/standard/802.11p-2010.html]

http://standards.ieee.org/findstds/standard/802.11p-2010.html

ARNÉZ Y VILLAZÓN

94 UPB - INVESTIGACIÓN & DESARROLLO, No. 14, Vol. 2: 92 – 105 (2014)

It communicates with the VIRMS Central to exchange selected context information, including state of roads, weather

conditions, traffic, blocking roads points, existence of accidents, requirement of technical assistance and state of danger

or panic of drivers along roads. To fulfill these requirements, the architecture of the VIRMS Remote Client follows the

recommendations presented in [4] which intends to help future emergency and rescue services.

The VIRMS Central hosts the VIRMS server and provides Internet connectivity (e.g. through a xDSL modem). The

VIRMS server receives requests, processes and sends back a response to the clients. Due to the limited computational

resources on the embedded clients (processing capabilities and memory), the designed communication protocol was

strongly simplified, so as to avoid complex data parsing and interpretation. On the server side however, no such

restriction is present, so that more advanced processing is performed on data such as database handling to store the

received information, filtering and query back of information required by the clients. Figure 2 shows the

communication scheme between the VIRMS client and server. The client sends information (to the server) about the

user/driver, vehicle variables, a message type and event types. The server sends back to the client the events near to the

vehicle. The message type field tells the server if the client is reporting events or not. Possible event types that the user

can report include poor state of the road, bad weather, heavy traffic, road accident and blocked roads.

Figure 2 - VIRMS Client – Server Communication.

The following section explains in detail the client side, since it has hardware and software components that enable main

features of the whole VIRMS Intelligent Transportation System.

3. VIRMS REMOTE CLIENT

The VIRMS Remote Client is an embedded system composed of hardware and software components that were

developed to meet the requirements of our ITS. The architecture of the VIRMS Remote Client is depicted in Figure 3.

The electronic system incorporates a 32-bit PIC32 microcontroller unit (MCU) from Microchip
2
, which communicates

and interacts with various peripherals as follows:

 GPS Module: to obtain the vehicle speed and geo-location data. It uses the Universal Asynchronous Receiver

and Transmitter (UART) communication interface.

 Accelerometer: to estimate vehicle’s spatial orientation. It uses a Serial Peripheral Interface (SPI).

 Temperature Sensor: to identify possible onboard fires after a crash. It uses a SPI interface.

 Color Touchscreen: To Interact with the vehicle’s driver through a Graphical User Interface (GUI). It uses a

Parallel Master Port (PMP) interface.

 SD Memory Card: to store road maps to be displayed in the GUI, and activity log information.

 Ethernet Communication Module: to allow the device Internet connection and communication to the VIRMS

Central through a 3G modem and Router.

Due to the large amount of tasks that the MCU must handle, the different priorities needed for the embedded system to

function properly and time constraints that must be satisfied, we decided to deploy the VIRMS Remote Client using a

Real-Time Operating System (RTOS). The RTOS is in charge of the task order execution given their priorities and the

2 http://www.microchip.com/pagehandler/en-us/family/32bit/

ELECTRONIC DEVICE ABOARD VEHICLE

xDSL
Modem

Firewall

Router

Switch

VIRMS
SERVER

Router 3G/4G

Sensors

User and Vehicle Information, Vehicle
Variables, Message Type, Event Type

Events close to the Vehicle

http://www.microchip.com/pagehandler/en-us/family/32bit/

VIRMS: A VEHICLE INFORMATION AND ROAD MONITORING SYSTEM

UPB - INVESTIGACIÓN & DESARROLLO, No. 14, Vol. 2: 92 – 105 (2014) 95

time assigned to each one. It also provides some guaranties in the execution of the operations that are handled

differently from a conventional operating system, notably the processing of data in real-time, i.e. without buffering as it

is produced. The RTOS also handles the mechanisms to communicate and pass information between tasks [5]. There is

a large set of commercial and non-commercial RTOS for the Microchip PIC32
3
. We chose FreeRTOS [6] for the

development of the VIRMS Remote Client due to its open source nature, small footprint, community support and full

task handling support. The programming interface for the development of the Remote Client embedded device is

standard C programming language, which allows implementing fast applications with small footprint.

Figure 3 - Remote Client Electronic Device.

When using an RTOS, we should create and manage “tasks” instead of following a purely sequential programming. The

task abstraction allows designing independent execution flows associated with priorities. Tasks communicate between

each other using queues and they can share common resources (memory sections or peripherals). For this reason, they

must be synchronized through the use of mutual exclusion mechanisms, namely mutexes.

 For the VIRMS Remote Client embedded system device six fundamental tasks have been identified:

 TaskIO: Task for the MCU’s Inputs and Outputs management

 TaskGPS: Task for GPS frame parsing

 TaskGUI: Task for Graphical User Interface (GUI) interactions

 TaskTCPIP: Task for network communication

 TaskSENSE: Task for sensor data reading (from accelerometer and temperature sensors).

 TaskSD: Task for the memory card interaction

Figure 4 shows the tasks ordered according to their priority. The task priority was assigned according to the importance

and the need of processor time. The first three tasks (TaskIO, TaskGPS and TaskGUI) are intended to run immediately

and the last three tasks (TaskTCPIP, TaskSD and TaskSENSE) are executed with a certain frequency (periodic tasks).

In FreeRTOS the highest priority is assigned with the highest value from a used range of values. The system’s highest

priority is 4 and the value is assigned to the tasks that require constant and immediate attention and must handle and

process the most important information. In our case, I/O operations and accessing data from the GPS are handled with

the highest priority. When tasks share the same priority value, the scheduler assigns the same processor time slice to

each one.

3 http://www.microchip.com/devtoolthirdparty/ThirdpartyListing.aspx?catId=809fe361-a1b9-41ce-bde7-821ba59ffdb4

INTERNET

ETHERNET
UART
RS232

PMP

SPI

TOUCH SCREEN

GPS

3G/4G ROUTER

SD MEMORY
CARD

ACELERÓMETRO ACCELEROMETER

TEMPERATURE
SENSOR

http://www.microchip.com/devtoolthirdparty/ThirdpartyListing.aspx?catId=809fe361-a1b9-41ce-bde7-821ba59ffdb4

ARNÉZ Y VILLAZÓN

96 UPB - INVESTIGACIÓN & DESARROLLO, No. 14, Vol. 2: 92 – 105 (2014)

Figure 4 - Remote Client Device Task Priorities.

The VIRMS_DATA data structure (see Figure 5) is used for data exchange of the generated user information between

tasks.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16
17

18

19
20

21

22
23

24

25
26

27
28

29

30
31

32

33
34

35

36
37

38

39

40

41

42
43

typedef struct

{

 char Code[12]; // vehicle and driver information

 char Plate[12];

 char Route[12];

 char Time[11]; // GPS received information

 char Hours[3];

 char Minutes[3];

 char Seconds[3];

 char Latitude[11];

 char Lat_indicator[2];

 char Longitude[11];

 char Long_indicator[2];

 char Satellites[3];

 char Altitude[9];

 char Speed[7];

 char Course[7];

 char Date[7];

 char Day[3];

 char Month[3];

 char Year[3];

 char AccX[8]; // Accelerometer and sensor data

 char AccY[8];

 char AccZ[8];

 char Temperature[8];

 char gps_lat_deg[2]; // Data type conversion

 char gps_lat_min[7];

 int gps_nlat_deg;

 float gps_nlat_min;

 char gps_lon_deg[3];

 char gps_lon_min[7];

 int gps_nlon_deg;

 float gps_nlon_min;

 double n_lat;

 double n_long;

 char MessageType[2]; // Type of message

 char EventType[8]; // Type of event to send

} VIRMS_DATA;

Figure 5 - User Information data type Structure.

TaskIO TaskGPS

TaskGUI

TaskTCPIP

TaskSENSETaskSD

VIRMS: A VEHICLE INFORMATION AND ROAD MONITORING SYSTEM

UPB - INVESTIGACIÓN & DESARROLLO, No. 14, Vol. 2: 92 – 105 (2014) 97

The data structure is used for inter-task communication holds the following information: user and vehicle information

introduced by driver (lines 3-5); the GPS received information (lines 7-2); the accelerometer and temperature sensor

data (lines 24-27); data type conversions of the received GPS latitude and longitude for navigation purposes that require

floating point calculations
4
 (lines 29-38); and the message type and the events to be sent to the VIRMS server (lines 40-

41).

The VIRMS_DATA structure is accessed through data queues in a shared memory segment. The interacting tasks use

mutexes to guarantee synchronized access to the data structure during runtime. Figure 6 depicts the inter-task data flow

and task-memory interactions. TaskIO interacts with the MCU inputs and outputs and sends the received data from the

GPS module and the touch commands (from the touchscreen) to TaskGPS and TaskGUI respectively; TaskGPS extracts

the relevant and required information received from the GPS module and writes into the data structure; TaskSENSE

reads data from the accelerometer and temperature sensors and then writes into the data structure; TaskGUI receives the

touch commands from the TaskIO and translates them for the user interaction with the graphical interface, this task also

reads information from the data structure to show it into the graphical user interface; TaskSD reads the data structure to

write the system logs into the external memory card; Finally TaskTCPIP reads and writes the data structure to send the

remote client device information to the server and to store the context information received information from the server

respectively.

Figure 6 - VIRMS Data Flow.

Figure 7 shows the flowchart of the “main” function of the program developed for the VIRMS Remote Client. The first

step is the initialization of the microcontroller hardware (“System Initialization”), followed by the initialization of all

tasks with the associated priorities (“Task Initialization”) and finally the initialization of the RTOS Scheduler

(“Scheduler Initialization”). Once all tasks are ready for execution the kernel determines which tasks are executed and

when according to their priorities. The “main” function will terminate (i.e. reach the END state) only if there is

insufficient heap memory, the user interrupts scheduler action, or un-handled critical errors are presented along the

general runtime execution. During execution, every task performs a set of instructions to read, write or transfer data.

3.1. TaskIO

This task allows receiving the information from the touchscreen when it is pressed by the user and also analyzes the

UART port interface. If there is data available in the UART receptor (GPS module communicates with the MCU trough

UART interface), the task stores the received data in a 10 bytes memory buffer. Once the memory buffer is full, the task

sends the data through a queue to the TaskGPS task for further processing.

4 The information to compute the floating-point operations is directly in-lined in the VIRMS_DATA structure, so as to avoid creating other structure

for inter-task communication. This also prevents repeated computations.

TaskIO

TaskGPS

TaskGUI

TaskTCPIP

TaskSENSE TaskSD

VIRMS_DATA

Structure

(Shared Memory)

SEND RECEIVED CHARACTERS

SEND TOUCH
COMMANDS

READ/WRITE

READ/WRITE

READWRITE

WRITE

LEGEND:

Inter-Task Communication

Task Memory Interaction

ARNÉZ Y VILLAZÓN

98 UPB - INVESTIGACIÓN & DESARROLLO, No. 14, Vol. 2: 92 – 105 (2014)

Figure 7 - Main program Flowchart

3.2. TaskGPS

This task allows saving the received NMEA
5
 frame characters from the GPS module. Among other information, the

collected data contains the GPGGA (Global Positioning System Fix Data) and the GPRMC (Recommended minimum

specific GPS/Transit data). The first one contains for example, information about time, latitude, longitude, number of

satellites, altitude and checksum. The second one contains additional information about date and speed. The data frames

are stored in the 500 bytes memory buffer that intends to store all the GPS NMEA frames in a burst (every GPS burst

occurs once per second). When the desire frames are found, each one is copied to an independent memory buffer for

specific parsing to obtain the desired data. Figure 8 shows an example of the GPS buffer and the frames stored in

independent buffers.

Figure 8 - GPS received data and frame memory buffers.

3.3. TaskGUI

This task is responsible for displaying all the graphical elements in a color display (16 bits) for user interaction with the

electronic device. The main elements to be displayed can have buttons, windows, check boxes, text boxes and images

5 NMEA stands for National Marine Electronics Association. This association developed a specification that defines the interface between marine
electronic equipment. GPS receiver communication is defined with this specification. More information at:

http://www.gpsinformation.org/dale/nmea.htm

System

Initialization

Task

Initialization

Start

Scheduler

Initialization

END

System

Interrupt/Error

http://www.gpsinformation.org/dale/nmea.htm

VIRMS: A VEHICLE INFORMATION AND ROAD MONITORING SYSTEM

UPB - INVESTIGACIÓN & DESARROLLO, No. 14, Vol. 2: 92 – 105 (2014) 99

(which are read from an external memory card). This task will also receive and interpret the messages sent by the touch

screen (function running in TaskIO) to indicate the elements with which the user interacts.

Figure 9 depicts the screen states for the Graphic User Interface (GUI). The initial state is represented by the “Splash

Screen” state. The subsequent states are of two types: “Create” and “Show”. The “Create”-type states are those

responsible for instantiating all graphics objects needed to allow user interaction whereas the “Show”-type states

display those objects. The transition between Create and Show states is implicit (i.e. no explicit event triggering a state

change state). State transition is performed automatically when all objects are ready to be displayed. Once the screen

changes, the MCU must delete all graphics objects from memory and then create new graphical objects for the next

screen. This is due to the limited amount of memory, which usage needs to be optimized by the MCU. Finally the

“Show”-type states remain showing their graphical objects until the user performs an action to change the screen.

Similar implicit cleanup is performed on the memory frames as well.

TaskGUI handles several screens to interact with the user to gather input data or to display information received from

the VIRMS Central server. The interactions triggering the creation or display of the other screens (after the very first

“Splash Screen”) are shown in Figure 9.

Figure 9 - Graphical User Interface Screen States.

Show User Login
Screen

Create User
Login Screen

Crear Teclado
Create Keyboard

Screen

Show Keyboard
Screen

Create User
Menu Screen

Show User
Menu Screen

Create
Information

Screen

Show
Information

Screen

Create Report
Screen

Show Report
Screen

Create
Navigation

Screen

Show
Navigation

Screen

Splash Screen

Touch Screen

Show while
waiting action

Show while
waiting action

Show while
waiting action

Show while
waiting action

Show while
waiting action

Show while
waiting action

Change Driver
Button

Accept Button

Information
Button

Report Button
Navigation

Button

Back Button Back Button

Back Button

ARNÉZ Y VILLAZÓN

100 UPB - INVESTIGACIÓN & DESARROLLO, No. 14, Vol. 2: 92 – 105 (2014)

The following screens are handled by the GUI:

 User Login Screen: Allows the user to enter a personal code, the current vehicle plate and route. After filling the

required information the user must press the “Accept” button to continue to the “User Menu” screen.

 User Menu Screen: Allows the user to choose among the VIRMS ITS features. Here the user can access to a

context Information screen, a screen for Event Report, and screen for localization and navigation that shows a static

map.

 Information Screen: The main purpose of this screen is to inform the vehicle driver about what is going on around,

this means that the VIRMS Remote Client devices provides useful context information for the driver. This screen

shows the data entered data by the user in the User Login Screen, the current time and date and the events around

the vehicles. The events are: poor state of the road, bad weather, heavy traffic, road accident and blocked roads.

 Event Report Screen: Allows the driver to report events that occur near the vehicle. The events that can be reported

are the same as the previous screen (information screen): poor state of road, bad weather, heavy traffic, road

accident and blocked roads. In addition the user may report that requires technical assistance and also if it senses

danger or feels threatened.

 Navigation Screen: The main function of this screen is to provide the driver a basic navigation and localization

service. The screen shows a static map of 220x220 pixels that represents a geographically square type map segment

with 10 Km side, which shows the vehicle’s current location.

The maps (in JPEG
6
 format) are pre-stored in a Secure Digital memory card (SD card) and are loaded into memory on

an “on-need” basis. This is because the MCU memory capacity is very limited and cannot store large amounts of data

such as several images at the same time. Additionally, the high communication latency due to the type of Internet access

(mobile network) does not offer an optimal solution to load maps directly from an online service such as Google Maps
7
,

together with the lack of appropriated API (Application Programming Interface) to access maps from a C programming

interface of the MCU. Such an interface is limited to static access to map images, which is therefore equivalent to our

solution based on pre-stored map images on the SD card.

In order to display the image on the screen it is necessary to read the image from the SD card and then decode the JPEG

image’ format, so as to correctly display the image buffer on screen. The current coordinates read from the GPS are

used to load the correct image of the map, which is at a fixed scale. The bottom left (x1, y1) and top right coordinates

(x2, y2) are known for each image (to simplify, we use those coordinates to search the name of the map files stored on

the SD card). When the received GPS coordinates are read (xcurrent, ycurrent), we are able to identify which map to be

loaded, based on the current location. Whenever the current coordinates are out of bound, we load the corresponding

map accordingly.

Figure 10 - Map Screen showing vehicle’s current location.

To indicate the current location in the map, we overlay a red spot indicator by modifying the image buffer to be

displayed. Figure 10 depicts the vehicle’s current location represented by point as a spot in the map. While (xcurrent,

6 JPEG stands for Joint Photographic Experts Group (http://jpeg.org/jpeg/)
7 http://developers.google.com/maps

Vehicle’s Current

Location

http://jpeg.org/jpeg/

VIRMS: A VEHICLE INFORMATION AND ROAD MONITORING SYSTEM

UPB - INVESTIGACIÓN & DESARROLLO, No. 14, Vol. 2: 92 – 105 (2014) 101

ycurrent) is within the map delimited by (x1, y1) and (x2, y2) we need to calculate the relative position where to display the

red spot at P(x,y). The translation calculation is given by equations (1) and (2). The first equation calculates the

translation of the received GPS latitude and the second equation calculates the translation of the received GPS

longitude. On both equations the MAP_WIDTH and MAP_HEIGHT are equal to 220 in our case (i.e. the size of the

image). Finally, the MAP_X_OFFSET is equal to 10 for the first equation and the MAP_Y_OFFSET is equal to 270 for

the second equation. The offset values are obtained from the margin pixels around the map image so as to make it

centered into the window container.

 [
(| |) ()

| |
]

(1)

 [
(| |) ()

| |
]

(2)

3.4. TaskTCPIP

This task is responsible for initializing and managing the TCP/IP protocol stack to provide Internet connectivity to

communicate with the VIRMS server. The network configuration relies on a DHCP
8
 server (for automatic settings), a

service that is provided by the 3G router connected to the MCU. The TaskTCPIP also handles the link layer MAC

address configuration and provides the interface to create network sockets to interact with the VIRMS server. The

VIRMS protocol is based on TCP for reliable communication. Once the connection is established and the data is sent

and received, the information is stored in the allocated VIRMS_DATA structure. Note that the architecture of RTOS

forces any other task requiring network connectivity to explicitly delegate all communication to this task, which implies

additional programming effort to correctly handle communication between tasks and through the network. Finally, this

task is scheduled to be executed every 4 seconds to avoid high volume information upload to the server.

3.5. TaskSENSE

This task allows the communication between the MCU and the Bosch SMB380 module
9
 that encapsulates a tri-axial

accelerometer and a temperature sensor. The communication uses a SPI interface where the MCU is the master and the

SMB380 is the slave. This task is executed every 200 milliseconds by adding a special RTOS timing function that

prevents inefficient processor waiting while the desire time ends. The sampling period was defined from the sensor’s

specification datasheet, which additionally prevents processor overloads that may result in a task starvation situations or

priority inversions.

3.6. TaskSD

This task allows the MCU to store all the collected and generated information into an external SD memory card. For

this purpose the task creates a text file in the SD memory card. The task access to the user data structure and retrieves

the most important data fields to write them into the created text file. The purpose of the stores text file is twofold: It

serves as a data logger to post-mortem analysis of events happening in the VIRMS Remote Client and it also serves as a

mechanism for non-volatile storage for data recovery in case of a crash. It is important to note that TaskSD and

TaskGUI share the same interface and hence the same resource (i.e. the SD memory card).

4. IMPLEMENTATION AND RESULTS

We developed a board containing the embedded electronics of the VIRMS Remote Client (see Figure 11) and measure

the system in real world conditions. The embedded electronic device was connected the cell phone network through a

3G router and modem. The VIRMS Central was developed using Java Servlets technology [7] and was deployed in an

Intel i7 computer with 4GB of RAM and running Ubuntu Linux 14.4.0. The Server was connected to the Internet

through a local ISP (Internet Service Provider), which provided a fixed IP address. For the electronic device setup, the

server IP address and the port were set into the electronic device microcontroller program. When the electronic device is

turned on the driver must fill the requested information. The user request information fields are: user code, vehicles

plate, vehicles route (destination). This information is stored in the VIRMS server and is used to send context

information back.

8 DHCP stands for Dynamic Host Configuration Protocol allowing automatic configuration over the network, and is defined as an Internet standard in
RFC 2131 (http://tools.ietf.org/html/rfc2131)

9 http://header.bosch.com/claim/ifl/framework/fallback.asp?component=productspecial&id=smb

ARNÉZ Y VILLAZÓN

102 UPB - INVESTIGACIÓN & DESARROLLO, No. 14, Vol. 2: 92 – 105 (2014)

Figure 11 - VIRMS Remote Client device board.

4.1. Test Scenario

The VIRMS tests took place in the National Highway number 4, in a road segment within the metropolitan area of 16

Km long between the cities of Cochabamba, Colcapirhua, Quillacollo and Vinto. Figure 12 depicts the vehicle position

(latitude and longitude) during the tests. The map was generated together with the path using the vehicle’s information

stored in the VIRMS server database. One can observe a given number of the interruption in the plotted paths that are

due to mobile internet connection loss, which mainly happened while changing or switching between mobile base

stations or where there was weak service coverage.

Figure 12 - Vehicle’s position during the tests.

Figure 13 shows the vehicle variables stored on the server’s database: a) speed of the vehicle (in Km/hour) and b) the

height above the sea level (in meters) captured by the VIRMS Remote Client. In both graphs the sample number

corresponds to every second elapsed between the starting point and the final destination.

VIRMS information can be used to identify possible driver’s excesses and infringements of speed limits. Also abrupt

changes in speed could warn about events like collisions or car falls to rescue institutions for fast and efficient

emergency attendance along the roads. To distinguish between those events and normal behavior, e.g. related to speed

reduction due to traffic lights, the VIRMS server checks the received data from the accelerometer (X, Y and Z axis

values) to discard false positives. Such type of the speed decreases can be observed in Figure 13 a) which corresponds

to stops due to red traffic lights along the road. Figure 13 b) showing the vehicle’s height is consistent since the cities in

the test scenario round the 2600 meters above sea level. Concerning the speed and height drops around sample numbers

70 and 420; those are due to connection losses while switching between mobile stations. To discard misinterpretation of

a sudden height difference (around 50 and 40 meters respectively) as an accident, VIRMS uses additional available data

such as timestamps and accelerometer information to discard false positives.

VIRMS: A VEHICLE INFORMATION AND ROAD MONITORING SYSTEM

UPB - INVESTIGACIÓN & DESARROLLO, No. 14, Vol. 2: 92 – 105 (2014) 103

Figure 13 - Vehicle’s variables during the tests: a) speed b) height above sea level.

Figure 14 shows a screenshot of context information received from the Server into the VIRMS Remote Client during

the tests. The first text group of shows user and vehicle information; the second group of text fields shows the current

time and date; and the last group of text fields, shows information received from the VIRMS server that contains the

events near the vehicle (poor state of the road, heavy traffic or blocked road).

Figure 14 - Context Information Received in the VIRMS Remote Client device.

4.2. Prototype cost

One of the main concerns of ITS development is the cost of the embedded devices on board of the vehicles. During the

development of VIRMS, cost efficiency was an important goal to reach, because VIRMS targets mainly the Bolivian

marketplace where cost is a real issue. TABLE 1 shows that we have reached our goal with a prototype cost of less than

200 USD. The higher cost corresponds to the electronic development (more than half of the price), followed by the

Communications components (Mobile modem and Router), and finally by the GPS module. It is important to note that a

mass production can significantly reduce the costs of VIRMS’s Remote Client devices, making it more accessible and

widely available.

TABLE 1 - PROTOTYPE COST

ITEM COST USD.

Electronic Development Board 90.00

GPS Module 25.00

SD Memory Card 10.00

Mobile Modem and Router 50.00

Accessories 10.00

TOTAL COST 185.00

a) Vehicle Speed Log b) Vehicle Height Above Sea Level

ARNÉZ Y VILLAZÓN

104 UPB - INVESTIGACIÓN & DESARROLLO, No. 14, Vol. 2: 92 – 105 (2014)

5. DISCUSSION AND FUTURE WORK

VIRMS not only supports traditional GPS tracking system features (generally applied for post-crash attendance), it also

allows the driver to be well informed due to the ability to exchange information between the VIRMS client and server

for a certain location. The exchanged information represents relevant context information that could prevent accidents

by warning drivers of what is happing around them. The systems also allows to attend accidents efficiently by

identifying them faster and also institutions like Police can identify driver’s excesses and infringements due to the

generated logs for each car with the VIRMS Remote Client onboard device.

One of the current problems of VIRMS is the high volume of information generated within each client, resulting in a

high amount of data in the server’s database. To mitigate this situation, further development will focus on efficient

storage and communication of information. Also, context information currently sent to the VIRMS Remote Client only

refers to the segment where the car is located. An extension on the communication protocol can enable to enhance this

information, e.g. by sending context information of neighbor segments and including more metadata to inform the

driver. We will explore such enhancements that are complementary to the existing VIRMS prototype.

To summarize, VIRMS’s current and future development focuses on four areas: The remote client hardware, ITS

software applications, communication security and the server side software enhancements. For remote client hardware

we are exploring additional forms of client technology, e.g. other types of embedded systems and the development of a

smartphone application remote client. The later seems a promising approach because smartphone’s hardware has most

of the required components (GPS, sensors, screen, network connectivity) and eases the map and navigation integration

and handling. For ITS software application we aim at developing a notification service to enhance user experience,

because currently the context information is displayed on user request only. For communication security, VIRMS will

be enhanced with Secure Socket Layer (SSL) for client – server communication. Finally, server side software

enhancements include a web service based API (Application Programming Interface) to simplify the interactions

between clients and server and the ability to show multiple remote clients and also to identify events automatically

along the roads.

6. RELATED WORK

OnStar [6] is an example of post-crash ITS. OnStar is a subsidiary of General Motors that provides subscription-based

communications, in-vehicle security and navigation. OnStar relies in CDMA mobile technology for data and voice

communications and this service mainly allows automatically detecting events like collisions and notifying OnStar call

centers for faster emergency attention.

The European Union has launched the eCall [8] intiative to build systems to bring fast assistance to drivers involved in

collisions anywhere in the European Union roads. In case of a crash, an e-Call electronic device installed in a car,

should automatically call the nearest emergency center. If no passenger is able to speak, a minimum set of data is sent,

which includes the exact location of the collision event.

Both eCall and OnStar are very similar. A vehicle collision activates the on-vehicle sensors, causing an emergency call

to be initiated, if there is not a passenger able to speak additional relevant information is sent to call centers. Unlike

eCall, OnStar also provides an on-road navigation system. However eCall is more ambitious since it is expected to

support all brands and types of vehicles in the European Union region, while OnStar is only supported by General

Motors vehicles in only a few countries [4].

OnStar and eCall initiatives require expensive infrastructure and both use closed communications protocols and

hardware technology. VIRMS, on the other hand is easier, but more suited to be deployed in countries like Bolivia. In

fact, the Bolivian government launched a initiative for inter-departmental buses for road safety increase, which uses a

GPS based tracking system, but this initiative has not achieved the intended deployment and hence the expected safety

increase due the high cost of the client electronic devices and their limitations in hardware and software since this

devices mainly send GPS data to a server for car tracking (one way communication) and do not incorporate a GUI.

7. CONCLUSIONS

In this article we presented VIRMS, an ITS based on low-cost and small footprint client and server. VIRMS does not

require special networking infrastructure, as it uses existing mobile phone network for internet access for client-server

communication. The VIRMS remote client uses bi-directional communication and information to send and receive

information about traffic events. Our prototype implementation shows that VIRMS provides the basic functionalities to

build road safety services. The working prototype was deployed and tested in Bolivian roads showing the feasibility of

the approach.

VIRMS: A VEHICLE INFORMATION AND ROAD MONITORING SYSTEM

UPB - INVESTIGACIÓN & DESARROLLO, No. 14, Vol. 2: 92 – 105 (2014) 105

8. REFERENCES

[1] Instituto Nacional de Estadisticas. Instituto Nacional de Estadisticas. [Online]. Avaible:

http://www.ine.gob.bo/indice/EstadisticaSocial.aspx?codigo=30903

[2] K. Dar et al. "Wireless communication technologies for ITS applications [Topics in Automotive Networking],"

Communications Magazine, IEEE, vol. 48, no. 5, pp. 156-162, may 2010.

[3] G. Araniti et al. "LTE for Vehicular Networking: a Survey," Communications Magazine, IEEE, vol. 51, no. 5, pp.

148-157, may 2013.

[4] F.J. Martinez et al. "Emergency Services in Future Intelligent Transportation Systems Based on Vehicular

Communication Networks," Intelligent Transportation Systems Magazine, vol. 2, no. 2, pp. 6-20, 2010.

[5] D. Ibrahim. Advanced PIC Microcontroller Projects in C: From USB to RTOS with the PIC18F Series. Oxford,

Oxford: Newnes, 2008.

[6] Real Time Engineers Ltd. (2013) FreeRTOS Quality RTOS & Embedded Software. [Online]. Avaible:

http://www.freertos.org

[7] Java Community Process (JPC). (2009, Dec.) JSR 315: JavaTM Servlet 3.0 Specification. [Online]. Avaible:

https://jcp.org/en/jsr/detail?id=315

[8] European Comission. Digital Agenda for Europe - ECall. [Online]. Avaible: http://ec.europa.eu/digital-

agenda/en/ecall-time-saved-lives-saved

[9] General Motors. OnStar. [Online]. Avaible: http://www.onstar.com

http://www.ine.gob.bo/indice/EstadisticaSocial.aspx?codigo=30903
http://www.freertos.org/
https://jcp.org/en/jsr/detail?id=315
http://ec.europa.eu/digital-agenda/en/ecall-time-saved-lives-saved
http://ec.europa.eu/digital-agenda/en/ecall-time-saved-lives-saved
http://www.onstar.com/

