S. Cecilia Tapia Siles, Ryad Chellali


Fish in nature take advantage of some types of turbulence and even generate it to swim with a minimum expenditure of energy. This is the case observed in rainbow trout swimming against the flow in well patterned turbulence phenomenon called Karman Street.
Robotic and Multiphysics simulators do not include the possibility of this sort of turbulent flow in interaction with the robot body, to train controllers. Therefore, to better understand how to design a robot that takes advantage of the turbulence, we have developed a simulation framework based on rigid body dynamics software (Webots) and a physics plugin. This plugin has been developed based on a generalized abstraction in the useful area of Karman vortex streets.
This framework allows the simulation of user designed robots and their controller interaction with the environment.

Palabras clave

Underwater Robotics, Turbulence, Energy Harvesting, Simulation

Texto completo:



M. J. Lighthill. Large-amplitude elongated-body theory of fish locomotion. Proceedings of the Royal Society of London. Series B, Biological Sciences, 179 - 1055:125 – 138, 1971.

S. Galls and O. Rediniotis. Neural network navigation of a biomimetic underwater vehicle. In Aerospace Sciences Meeting and Exhibit, 2001.

S. F. Galls and O. K. Rediniotis. Development of a computational hydrodynamic model for a biomimetic underwater autonomous vehicle. AIAA JOURNAL, 45-5, 2007.

T. J. Pedley and S. J. Hill. Large-amplitude undulatory fish swimming: fluid mechanics coupled to internal mechanics. The Journal of Experimental Biology, 201:3431–3438, 1999.

M. Porez. Modele dynamique analytique de la nage tridimensionnelle anguilliforme pour la robotique. PhD thesis, Ecole des Mines de Nantes, 2007.

O. Ekeberg. A combined neuronal and mechanical model of fish swimming. Biological Cybernetics, 69:363–374, 1993.

A. Ijspeert. A connectionist central pattern generator for the aquatic and terrestrial gaits of a simulated salamander. Biological cybernetics, 84:331–348, 2001.

D. Adkins and Y. Y. Yan. CFD simulation of fish-like body moving in viscous liquid. Journal of Bionic Engineering, 3:147–153, 2006.

N. Vandenberghe, J. Zhang, and S. Childress. Symmetry breaking leads to forward flapping flight. J. Fluid Mech., 506:147–155, 2004.

J. Eldredge and D. Pisani. Passive locomotion of a simple articulated fish-like system in the wake of an obstacle. J. Fluid Mech., 607:279–288, 2008.

E. Tytell, C. Hsu, T. Williams, A. Cohen, and L. Fauci. Interactions between internal forces, body stiffness, and fluid environment in a neuromechanical model of lamprey swimming. PNAS, 107:19832–19837, 2010.

G. K. Taylor, R. L. Nudds, and A. L. R. Thomas. Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency. Nature, 425:707–711, 2003.

M. Triantafyllou and G. Triantafyllou. An efficient swimming machine. Scientific American, March, 1995.

S. Vogel. Life in moving fluids. Princeton University Press, 2nd edition, 1996.

Th. V. Karman. Uber den mechanismus des widerstandes, den ein bewegter korper in einer flussigkeit erfahrt. Nachrichten von der Gesellschaft der Wissenschaften zu Gottingen, Mathematisch- Physikalische Kl., pages 509–517, 1911.

Th. V. Karman. Uber den mechanismus des widerstandes, den ein bewegter korper in einer flussigkeit erfahrt. Nachrichten von der Gesellschaft der Wissenschaften zu Gottingen, Mathematisch- Physikalische Kl., pages 547–556, 1912

James Carl Schatzman. A model for the Von Karman vortex street. PhD thesis, Applied mathematics - California Institute of technology, 1981.

H. Helmholtz. On the integrals of the hydrodynamical equations which express vortex motion. The London, Edinburgh and Dublin Philosophical magazine and journal of science. 33:485–511, 1867.

O. Pust and C. Lund. Laser Techniques Applied to Fluid Mechanics, chapter Turbulent shear flows - The Karman Vortex Street - LDV and PIV Measurements Compared with CFD, pages 129–142. Springer, Berlin, 2000.

J. Liao, D. Beal, G. Lauder, and M. Triantafyllou. The Karman gait: novel body kinematics of rainbow trout swimming in a vortex street. The journal of experimental biology, 206:1059–1073, 2003.

J. Liao, D. Beal, G. Lauder, and M. Triantafyllou. Fish exploiting vortices decrease muscle activity. Science, 302:1566–1569, 2003.

Webots. Commercial Mobile Robot Simulation Software.

C. Tapia-Siles and R. Chellali. Simulation of an under-actuated fish-like robot controlled by an adaptive frequency oscillator inside a Karman Vortex Street. IFAC Proceedings Volumes: (IFAC-Papers Online). Vol. 31. ed. 2012. p. 19-24.

Enlaces refback

  • No hay ningún enlace refback.

Resumen : 336

Copyright (c) 2018 Revista Investigación & Desarrollo

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional.