DOMESTIC WASTEWATER TREATED BY ANAEROBIC BAFFLED REACTORS AND GRAVEL FILTERS AS A RESOURCE TO BE USED IN AGRICULTURE

Autores/as

  • Ivette Echeverría Universidad Privada Boliviana
  • Laura Machicado Universidad Privada Bolviana
  • Oliver Saavedra Universidad Privada Boliviana
  • Ramiro Escalera Universidad Privada Boliviana
  • Gustavo Heredia Fundación AguaTuya
  • Renato Montoya Fundación AguaTuya

DOI:

https://doi.org/10.23881/idupbo.019.1-4i

Palabras clave:

Anaerobic Baffled Reactor, Wastewater, Performance, Reuse, Irrigation, Gravel Filters, WWTP Evaluation, Bolivia, Sustainability

Resumen

Due to limited availability of clean water, treated wastewater is an important resource to reduce water demand through its reuse. In Bolivia, one of the most common practices is the use of wastewater for crop irrigation. Wastewater Treatment Plants (WWTP) must adequate their processes so their effluents are safe for irrigation and for the environment. The intermediate city of Tolata, located at 2720 meters above sea level operates a WWTP with a solids removal pretreatment followed by an Anaerobic Baffled Reactors (ABR) and series of horizontal and vertical gravel filters. The objective of this study is to evaluate its efficiency and determine the potential of the treated effluent for crop irrigation. To assess water quality parameters a series of monitoring campaigns were carried out from August to December 2018. The average concentrations found in the WWTP affluent are as follows: 396 ± 289 mg-BOD5/l, 795 ± 262 mg-COD/l, 361 ± 113 mg-TSS/l, 66.0 ± 38.9 mg-N-NH3/l, 11.8 ± 2.2 mg-P/l and 2.73 ± 1.13 m-S/cm for EC. The concentrations found in the effluent on average are: 18 ± 12 mg-BOD5/l, 95 ± 61 mg-COD/l, 18 ± 10 mg-TSS/l, 41.7±26.5mg-N-NH3/l, 8.3 ± 2.2 mg-P/l and 2.35 ± 0.75 m-S/cm for EC. The overall efficiencies of the WWTP obtained are: 95 % of BOD5, 88% of total COD, 95 % of TSS, 37% of N-NH3, and 30% of P. According to these results, it is advisable to restrict irrigation to tall stemmed crops, grass and fodder that have moderate tolerance to salinity and are not eaten raw or without further processing to reduce risks associated with health. In order to use the treated effluent for irrigation of vegetables or other products that are eaten raw, this WWTP needs to implement a disinfection process.

Descargas

Los datos de descargas todavía no están disponibles.

Afiliación del autor/a

Ivette Echeverría, Universidad Privada Boliviana

Centro de Investigaciones en Ingeniería Civil y Ambiental (CIICA)

Laura Machicado, Universidad Privada Bolviana

Centro de Investigaciones en Ingeniería Civil y Ambiental (CIICA)

Oliver Saavedra, Universidad Privada Boliviana

Centro de Investigaciones en Ingeniería Civil y Ambiental (CIICA)

Ramiro Escalera, Universidad Privada Boliviana

Centro de Investigaciones en Procesos Industriales (CIPI)

Referencias

Hamilton, A., Stagnitti, F., Premier, R., Boland, A.-M., Hale, G., 2006. Quantitative microbial risk assessment models for consumption of raw vegetables irrigated with reclaimed water. Appl. Environ. Microbiol.

WHO, 2006. Guidelines for the safe use of wastewater, excreta and greywater.

MMyA, 2013a. Sistematización sobre tratamiento y reúso de aguas residuales.

Moscoso, O., Romero, A.M., 2002. Uso de las Aguas Residuales tratadas en Riego. Caso de Estudio de Bolivia.

MMyA, 2013b. Guía técnica para el reúso de aguas residuales en la agricultura. Estado Plurinacional de Bolivia.

Gandarillas, V., Saavedra, O., Escalera, R., Montoya, R., 2017. Revisión De Las Experiencias En El Tratamiento De Aguas Residuales Domésticas Mediante Reactores UASB En Cochabamba-Bolivia Comparadas Con Las De Latinoamérica, India Y Europa. Investig. & Desarro. 1, 83–98. https://doi.org/10.23881/idupbo.017.1-7i

Saavedra, O., Escalera, R., Heredia, G., Montoya, R., Echeverria, I., Villarroel, A., Brito, L., 2018. Evaluation of a domestic wastewater treatment plant at an intermediate city of Bolivia, in: Congreso Interamericano de Ingeniería Sanitaria y Ambiental. AIDIS.

Bachmann, A., Beard, V.L., McCarty, P.L., 1982. Comparison of Fixed-Film Reactors with a Modified Sludge Blanket Reactor, in: Proceedings of the First International Conference of fFxed-Film Biological Processes Vol II. pp. 1192–1211.

Bachmann, A., Beard, V.L., McCarty, P.L., 1985. Performance characteristics of the anaerobic baffled reactor. Water Res. 19, 99–106. https://doi.org/10.1016/0043-1354(85)90330-6

Sato, N., Okubo, T., Onodera, T., Ohashi, A., Harada, H., 2006. Prospects for a self-sustainable sewage treatment system : A case study on full-scale UASB system in India’s Yamuna River Basin 80, 198–207. https://doi.org/10.1016/j.jenvman.2005.08.025

Barber, W., Stuckey, D., 1998. The use of the Anaerobic Baffled Reactor (ABR) for wastewater treatment: A Review. Water Res. 33, 1561–1578.

Bodík, I., Kratochvíl, K., Gašpariková, E., Hutan, M., 2003. Nitrogen removal in an anaerobic baffled filter reactor with aerobic post-treatment. Bioresour. Technol. 86, 79–84. https://doi.org/10.1016/S0960-8524(02)00109-8

Barber, W.P., Stuckey, D.C., 2000a. Nitrogen removal in a modified Anaerobic Baffled Reactor (ABR): 2, Nitrification. Water Res. 34.

Singh, S., Haberl, R., Moog, O., Shrestha, R.R., Shrestha, P., Shrestha, R., 2009. Performance of an anaerobic baffled reactor and hybrid constructed wetland treating high-strength wastewater in Nepal-A model for DEWATS. Ecol. Eng. 35, 654–660. https://doi.org/10.1016/j.ecoleng.2008.10.019

Nasr, F.A., Doma, H.S., Nassar, H.F., 2009. Treatment of domestic wastewater using an anaerobic baffled reactor followed by a duckweed pond for agricultural purposes. Environmentalist 29, 270–279. https://doi.org/10.1007/s10669-008-9188-y

Bodkhe, S.Y., 2009. A modified anaerobic baffled reactor for municipal wastewater treatment. J. Environ. Manage. 90, 2488–2493. https://doi.org/10.1016/j.jenvman.2009.01.007

INE, 2012. Censo de Población y Vivienda. Bolivia.

PDM, 2007. Plan de desarrollo municipal Tolata.

APHA/AWWA/WEF, 1999. Standard Methods for the Examination of Water and Wastewater.

Metcalf and Eddy, I., 2003. Ingeniería de aguas residuales, tratamiento, vertido y re-utilización, 4th ed.

Jeong, H., Kim, H., Jang, T., 2016. Irrigation water quality standards for indirect wastewater reuse in agriculture: A contribution toward sustainable wastewater reuse in South Korea. Water (Switzerland) 8. https://doi.org/10.3390/w8040169

Ayers, R.S., Westcot, D.W., 1987. La calidad del agua en la agricultura.

Rhoades, J.D., Merril, S.D., 1976. Assessing the suitability of water for irrigation: Theoretical and empirical approaches, FAO soils bulletin 31.

Mulvaney, R.L., 1996. Nitrogen inorganic forms, in: Madison, W. (Ed.), Part 3. SSSA Book Ser. 5. Soil Sci. Soc. Am.

Raber, B., Kogel-Knabner, I., 1995. Desorption of PAH polycyclic aromatic hydrocarbons from soils under the influence of dissolved organic substances.

Publicado

17-07-2019

Cómo citar

Echeverría, I., Machicado, L., Saavedra, O., Escalera, R., Heredia, G., & Montoya, R. (2019). DOMESTIC WASTEWATER TREATED BY ANAEROBIC BAFFLED REACTORS AND GRAVEL FILTERS AS A RESOURCE TO BE USED IN AGRICULTURE. Revista Investigación &Amp; Desarrollo, 19(1). https://doi.org/10.23881/idupbo.019.1-4i

Número

Sección

Ingenierías