• Ramiro Escalera Vásquez Universidad Privada Boliviana
  • Uli Nicol Hosse Pastor Universidad Privada Bolivana
  • Pablo Marcelo Pérez García Utrecht University

Palabras clave:

Ferrate (VI), Synthetic Organic Dyes, Electrochemical Oxidation, Decolorization.


This paper deals with the in-situ electrochemical oxidation of Reactive Black 5 (RB-5), Reactive Blue 19 (RB-19) and Allura Red AC (AR-AC), using commercial steel wool as electrodes. At the optimal conditions (18 V and NaOH 0.33M), the decolorization of RB-19 (anthraquinone-type dye) is much more rapid than those of azo dyes RB-5 and AR-AC. The reaction rates based on a first order reaction model were 0.134 min-1for RB-19, 0.043 min-1 for RB-5 and 0.028 min-1 for AR-AC. Color removal efficiencies were higher than 95% achieved in 120 min. The analyses of spectra of the three dyes in the visible region indicate a complete cleavage of both azo and quinoid chromophores. In the case of RB-19 no new absorption peaks occurred in the UV region, showing a partial oxidation of aromatic groups without the generation of intermediates. In case of both azo-type dyes RB-5 and AR-AC, formation/accumulation of intermediates followed by their partial oxidation may have occurred. All these observations indicate that the predominant mechanism for decolorization was the oxidation of the three dyes. We conclude that that the electrochemical oxidation by ferrate (VI), under low voltages and low NaOH concentrations, using commercial steel wool as electrodes is an efficient and cost-effective alternative for the decolorization of azo and anthraquinone type dyes. For future studies a COD analysis should be made in order to correlate the decolorization and the elimination of the organic load in the dye solutions.


Los datos de descargas todavía no están disponibles.

Afiliación del autor/a

Ramiro Escalera Vásquez, Universidad Privada Boliviana

Centro de Investigaciones en Procesos Industriales – CIPI

Uli Nicol Hosse Pastor, Universidad Privada Bolivana

Centro de Investigaciones en Procesos Industriales – CIPI


A. Camacho, “Lineamientos para el plan estratégico sectorial de gestión de aguas residuales en lavanderías de jeans de Cochabamba. Editado y en cooperación técnica con Swisscontact,” pp.17, 2016.

A. Zaconeta Piva and R. Escalera Vásquez, “Desarrollo de un sistema de reciclaje de aguas residuales textiles coloreadas mediante la utilización de un fotoreactor solar”, Investigación & Desarrollo, vol. 1, no. 10, pp. 36–47, 2010.

S. Barışçı, O. Turkay, and A. Dimoglo, “Review on Greywater Treatment and Dye Removal from Aqueous Solution by Ferrate (VI)”, in Ferrites and Ferrates: Chemistry and Applications in Sustainable Energy and Environmental Remediation, vol. 1238, American Chemical Society, 2016, pp. 14–349.

H. A. Akdogan, M. C. Topuz, and A. A. Urhan, “Studies on decolorization of reactive blue 19 textile dye by Coprinus plicatilis”, J. Environ. Health Sci. Eng., vol. 12, no. 1, p. 49, 2014.

F. P. Van Der Zee, “Anaerobic azo dye reduction”, Wageningen University, 2002.

G. Ciobanu, S. Barna, and M. Harja, “Kinetic and equilibrium studies on adsorption of Reactive Blue 19 dye from aqueous solutions by nanohydroxyapatite adsorbent”, Arch. Environ. Prot., vol. 42, no. 2, Jan. 2016.

Y. Cheng, M. Lu, C. Jiao, and H.-J. Liu, “Preparation of stabilized nano zero-valent iron particles via a rheological phase reaction method and their use in dye decolourization”, Environ. Technol., vol. 34, no. 4, pp. 445–451, Feb. 2013.

B. Armaǧan, O. Özdemir, M. Turan, and M. Çelik, “The removal of reactive azo dyes by natural and modified zeolites: Removal of reactive azo dyes by zeolites”, J. Chem. Technol. Biotechnol., vol. 78, no. 7, pp. 725–732, Jul. 2003.

D. Rajkumar, B. J. Song, and J. G. Kim, “Electrochemical degradation of Reactive Blue 19 in chloride medium for the treatment of textile dyeing wastewater with identification of intermediate compounds”, Dyes Pigments, vol. 72, no. 1, pp. 1–7, Jan. 2007.

V. M. Vasconcelos et al., “Electrochemical removal of Reactive Black 5 azo dye using non-commercial boron-doped diamond film anodes”, Electrochimica Acta, vol. 178, pp. 484–493, Oct. 2015.

S. A. Popli and U. D. Patel, “Electrochemical decolorization of Reactive Black 5 in an undivided cell using Ti and graphite anodes: Effect of polypyrrol coating on anodes”, J. Electrochem. Sci. Eng., vol. 5, no. 2, Aug. 2015.

F. Esteves and E. Sousa, “CI Reactive Black 5 degradation by advanced electrochemical oxidation process, AEOP,” pp. 1–6, 2007.

İ. A. Şengil and M. Özacar, “The decolorization of C.I. Reactive Black 5 in aqueous solution by electrocoagulation using sacrificial iron electrodes”, J. Hazard. Mater., vol. 161, no. 2–3, pp. 1369–1376, Jan. 2009.

J.-M. Fanchiang and D.-H. Tseng, “Degradation of anthraquinone dye C.I. Reactive Blue 19 in aqueous solution by ozonation”, Chemosphere, vol. 77, no. 2, pp. 214–221, Sep. 2009.

Q. Zheng, Y. Dai, and X. Han, “Decolorization of azo dye C.I. Reactive Black 5 by ozonation in aqueous solution: influencing factors, degradation products, reaction pathway and toxicity assessment”, Water Sci. Technol., vol. 73, no. 7, pp. 1500–1510, Apr. 2016.

S. Meriç, D. Kaptan, and T. Ölmez, “Color and COD removal from wastewater containing Reactive Black 5 using Fenton’s oxidation process”, Chemosphere, vol. 54, no. 3, pp. 435–441, Jan. 2004.

P. Bahmani, A. Maleki, E. Ghahramani, and A. Rashidi, “Decolorization of the dye reactive black 5 using Fenton oxidation”, African J. Biotechnol., vol. 12, no. 26, pp. 4115–4122, 2013.

M. Qiu, J. Shou, P. Ren, and K. Jiang, “A comparative study of the azo dye reactive black 5 degradation by UV / TiO2 and photo-fenton processes”, J. Chem. Pharm. Res., vol. 6, no. 7, pp. 2046–2051, 2014.

M. Siddique, R. Khan, A. F. Khan, and R. Farooq, “Improved Photocatalytic Activity of TiO2 Coupling Ultrasound for Reactive Blue 19 Degradation”, J. Chem. Soc. Pak., vol. 36, no. 1, pp. 37–43, 2014.

J.-M. Hong, Y.-F. Xia, C.-C. Hsueh, and B.-Y. Chen, “Kinetic study of Reactive Black 5 degradation by Fe 2+ /S 2 O 8 2− process via interactive model-based response surface methodology”, Water Sci. Technol., vol. 76, no. 7, pp. 1754–1769, Oct. 2017.

Y. Lee, M. Cho, J. Y. Kim, and J. Yoon, “Chemistry of ferrate (Fe (VI)) in aqueous solution and its applications as a green chemical,” Journal of Industrial and Engineering Chemistry-Seoul-, vol. 10, no. 1. pp. 161–171, 2004.

G. Li, N. Wang, B. Liu, and X. Zhang, “Decolorization of azo dye Orange II by ferrate(VI)–hypochlorite liquid mixture, potassium ferrate(VI) and potassium permanganate”, Desalination, vol. 249, no. 3, pp. 936–941, Dec. 2009.

G. R. Xu, Y. P. Zhang, and G. B. Li, “Degradation of azo dye active brilliant red X-3B by composite ferrate solution”, J. Hazard. Mater., vol. 161, no. 2–3, pp. 1299–1305, Jan. 2009.

Q. Han et al., “Effects of coexisting anions on decolorization of azo dye X-3B by ferrate(VI) and a comparative study between ferrate(VI) and potassium permanganate,” Sep. Purif. Technol., vol. 108, pp. 74–82, Apr. 2013.

S. Sahinkaya, “Decolorization of reactive orange 16 via ferrate (VI) oxidation assisted by sonication”, Turk. J. Chem., vol. 41, pp. 577–586, 2017.

X. Dong, L. Wang, X. Zhang, L. Bai, X. Zhang, H. Ma, C. Ma, and M. Xue, “Oxidative degradation of azo dye Reactive Red 2BF by potassium ferrate”, Adv. Mater. Res., vol. 523, pp. 2617–2620, 2012.

Y. Li and M. Li, “Treatment of acidic red-dye wastewater by ferrate (VI) oxidation”, J. Shenyang Jianzhu Univ. (Natural Sci.) vol. 27, pp. 737–740., 2011.

G. R. Xu, Y. P. Zhang, and G. B. Li, “Degradation of azo dye active brilliant red X-3B by composite ferrate solution”, J. Hazard. Mater., vol. 161, no. 2–3, pp. 1299–1305, 2009.

P. M. Pérez García, S. L. Ibáñez-Calero, and R. Escalera Vásquez, “Degradation of synthetic organic dyes in solution by ferrate - hypochlorite or calcium hypochlorite”, Investigación & Desarrollo, vol. 1, no. 17, pp. 43–53, 2017.

O. Turkay, S. Barışçı, and A. Dimoglo, “Kinetics and mechanism of methylene blue removal by electrosynthesized ferrate (VI)”, Sep. Sci. Technol., vol. 51, no. 11, pp. 1924–1931, Jul. 2016.

M. Villanueva, A. Hernandez, J. M. Peralta-Hernandez, E. R. Bandalab, and M. A. Quiróz, “In-situ Electrochemical Generation of Ferrate Ion [Fe(VI)] in Acidic Conditions: A Potential Wastewater Decontamination Process”, ECS Transactions, pp. 411–416, 2008.

S. Barışçı, F. Ulu, H. Särkkä, A. Dimoglo, and M. Sillanpää, “Electrosynthesis of Ferrate (VI) ion Using High Purity Iron Electrodes: Optimization of Influencing Parameters on the Process and Investigating Its Stability”, Int. J. Electrochem. Sci., vol. 9, p. 19, 2014.

K. Bevziuk, A. Chebotarev, D. Snigur, Y. Bazel, M. Fizer, and V. Sidey, “Spectrophotometric and theoretical studies of the protonation of Allura Red AC and Ponceau 4R”, J. Mol. Struct., vol. 1144, pp. 216–224, Sep. 2017.

K. Bouzek, I. Roušar, and M. A. Taylor, “Influence of anode material on current yield during ferrate(VI) production by anodic iron dissolution Part II: Current efficiency during anodic dissolution of white cast iron to ferrate(VI) in concentrated alkali hydroxide solutions”, J. Appl. Electrochem., vol. 26, no. 9, pp. 925–931, 1996.

Z. Ding, C. Yang, and Q. Wu, “The electrochemical generation of ferrate at porous magnetite electrode”, Electrochimica Acta, vol. 49, no. 19, pp. 3155–3159, Aug. 2004.



Cómo citar

Escalera Vásquez, R., Hosse Pastor, U. N., & Pérez García, P. M. (2018). ELECTROCHEMICAL OXIDATION OF SYNTHETIC ORGANIC DYES BY FERRATE (VI), USING COMMERCIAL STEEL WOOL ELECTRODES. Revista Investigación &Amp; Desarrollo, 18(1). Recuperado a partir de https://www.upb.edu/revista-investigacion-desarrollo/index.php/id/article/view/166