• Fabiana Cañipa Universidad Privada Boliviana
  • Fabio Arnez Universidad Privada Boliviana
  • Omar Ormachea Universidad Privada Boliviana
  • Alex Villazón Universidad Privada Boliviana
  • Armando Rivero Scuola Universitaria Professionale della Svizzera Italiana (SUPSI)
  • Gian Carlo Dozio Scuola Universitaria Professionale della Svizzera Italiana (SUPSI)
  • Erick Escobar Universidad Privada Boliviana


Palabras clave:

Street Lighting System, Photovoltaic System, Intelligent Wireless Control System, Energy Efficiency.


Conventional street lighting systems do not allow controlling the light intensity depending on the traffic of pedestrians or vehicles, only operate in two automatic modes (on/off) according to the availability of daylight and consume enormous amounts of electric energy. In this article, we describe the design, development and implementation of a new intelligent street lighting system that is based on LED technology, an energy-efficient embedded wireless control device (hardware) designed from scratch, and photovoltaic solar energy. The embedded device includes specialized firmware and an energy-efficient wireless communication protocol, that allows to form a network of infrared sensors to detect pedestrians and vehicles, so as to control and dim the LED luminaires. We implemented a pilot system in a back road of the campus of Universidad Privada Boliviana, in the city of Cochabamba, Bolivia, where energy consumption measurements confirm energy savings of 72.8% thanks to the developed intelligent control system.


Los datos de descargas todavía no están disponibles.

Afiliación del autor/a

Fabiana Cañipa, Universidad Privada Boliviana

Centro de Investigaciones Ópticas y Energías (CIOE)

Fabio Arnez, Universidad Privada Boliviana

Centro de Investigaciones Ópticas y Energías (CIOE)

Omar Ormachea, Universidad Privada Boliviana

Centro de Investigaciones Ópticas y Energías (CIOE)

Alex Villazón, Universidad Privada Boliviana

Centro de Investigaciones de Nuevas Tecnologías Informáticas (CINTI)

Erick Escobar, Universidad Privada Boliviana

Centro de Investigaciones Ópticas y Energías (CIOE)


The Royal Society for the Prevention of Accidents, “Road Safety Information - Street Lighting and Road Safety,” Edgbaston, Birmingham, 2018.

R. Beyer and K. Ker, “Street lighting for preventing road traffic injuries,” Cochrane Database Syst. Rev., no. 1, pp. 2009–2011, 2009.

B. Welsh and D. Farrington, “Effects of improved street lighting on crime,” Campbell Syst. Rev., vol. 4, no. 13, 2008.

R. Steinbach, C. Perkins, L. Tompson, S. Johnson, B. Armstrong, J. Green, C. Grundy, P. Wilkinson, and P. Edwards, “The effect of reduced street lighting on road casualties and crime in England and Wales: Controlled interrupted time series analysis,” J. Epidemiol. Community Health, vol. 69, no. 11, pp. 1118–1124, 2015.

G. Shahzad, H. Yang, A. W. Ahmad, and C. Lee, “Energy-Efficient Intelligent Street Lighting System Using Traffic-Adaptive Control,” IEEE Sens. J., vol. 16, no. 13, pp. 5397–5405, 2016.

CNDC, “Principales Sistemas Eléctricos,” Reportes Comité Nacional de Despacho de Carga, 2018. [Online]. Available: [Accessed: 12-Jul-2018].

C. R. B. S. Rodrigues, P. S. 0. Almeida, G. M. Soares, J. M. Jorge, D. P. Pinto, and H. A. C. Braga, “An experimental comparison between different technologies arising for public lighting: LED luminaires replacing high pressure sodium lamps,” in Proceedings - ISIE 2011: 2011 IEEE International Symposium on Industrial Electronics, pp. 141–146, 2011.

M. Barman, S. Mahapatra, D. Palit, and M. K. Chaudhury, “Energy for Sustainable Development Performance and impact evaluation of solar home lighting systems on the rural livelihood in Assam, India,” Energy Sustain. Dev., vol. 38, pp. 10–20, 2017.

M. Lucano, I. Fuentes, and S. Avilés, “Mapa Solar de Bolivia,” 2010. [Online]. Available: [Accessed: 07-Feb-2019].

M. Magno, T. Polonelli, L. Benini, E. Popovici, and S. Member, “A Low Cost , Highly Scalable Wireless Sensor Network Solution to Achieve Smart LED Light Control for Green Buildings,” vol. 15, no. 5, pp. 2963–2973, 2015.

P. C. Veena, P. Tharakan, and H. Haridas, “Smart Street Light System based on Image Processing” in International Conference on Circuit, Power and Computing Technologies [ICCPCT], 2016.

S. Siregar, “Solar Panel and Battery Street Light Monitoring System Using GSM Wireless Communication System,” in 2nd International Conference on Information and Communication Technology (ICoICT), pp. 272–275, 2014.

M. Swati and R. Parekar, “An Intelligent System for Monitoring and Controlling of Street Light using GSM Technology,” in International Conference on Information Processing (ICIP), pp. 604–609, 2015.

A. Kovács, R. Bátai, B. C. Csáji, P. Dudás, B. Háy, G. Pedone, T. Révész, and J. Váncza, “Intelligent control for energy-positive street lighting,” Energy, vol. 114, pp. 40–51, 2016.

IEEE Standards Association, IEEE Standard for Local and metropolitan area networks — Part 15 . 4 : Low-Rate Wireless Personal Area Networks (LR-WPANs). New York, US: The Institute of Electrical and Electronics Engineers, Inc., 2011.

IHS Markit Standards Store, “ANSI TIA/EIA-485-A Electrical Characteristics of Generators and Receivers for Use in Balanced Digital Multipoint Systems.” [Online]. Available: [Accessed: 07-Jan-2019].

IHS Markit Standards Store, “TSB89 Application Guidelines for TIA/EIA-485.” [Online]. Available: [Accessed: 07-Jan-2018].

Silicon Labs, “AN0002.1: EFM32 and EFR32 Wireless Gecko Series 1 Hardware Design Considerations,” 2016. [Online]. Available: [Accessed: 01-Jun-2017].

Silicon Labs, “EFR32FG12 Flex Gecko Proprietary Protocol SoC Family Data Sheet,” 2016. [Online]. Available: [Accessed: 01-Jun-2017].

Panasonic, “Infrared array sensor grid-eye.” [Online]. Available: [Accessed: 06-Mar-2017].

MaxLinear, “SP3485 - 3.3 V Low Power Half-duplex Rs-485 Transceiver with 10Mbps Data Rate.” [Online]. Available: . [Accessed: 07-Jan-2019].

Linear Technologies, “LT1762 Series - 150 mA, Low Noise LDO Micropower Regulators,” REV A, 2017. [Online]. Available:

IBNORCA, “NB 1412001:2 Alumbrado público - Reglas generales y especificaciones técnicas.” 2013.

Relux, “ReluxDesktop” [Online]. Available: [Accessed: 25-Sep-2018].

A. Alwaeli, M. T. Chaichan, H. A. Kazem, A. M. J. Mahdy, and A. A. Al-waeely, “Optimal Sizing of a Hybrid System of Renewable Energy for Lighting Street in Salalah-Oman using Homer software,” Int. J. Sci. Eng. Appl. Sci., vol. 2, no. 5, pp. 157–164, 2016.

S. Weixiang, “Design of standalone photovoltaic system at minimum cost in Malaysia,” in 3rd IEEE Conference on Industrial Electronics and Applications, no. 3, pp. 702–707, 2008.

N. D. Kaushika, A. Mishra, and A. K. Rai, Solar Photovoltaics - Technology, System Design, Reliability and Viability. Springer International Publishing, 2018.

LORENTZ, “LC100-M36 High-efficiency PV Module.” [Online]. Available: [Accessed: 01-Jul-2018].

PHOCOS, “Solar Charge Controller CML05-2, CML08-2, CML10-2, CML15-2, CML20 User Manual English,” 2011. [Online]. Available: [Accessed: 01-Jun-2018].

Baterias TOYO, “Bateria TOYO Solar - N70S.” [Online]. Available: [Accessed: 01-Jul-2018].

Victron Energy B.V., “Phoenix Inverters (250VA - 1200VA, 230V and 120V, 50Hz or 60Hz).” [Online]. Available: [Accessed: 01-Jun-2018].

ON Semiconductor, “BC637, BC639, BC639-16 High Current Transistors.” pp. 637–640, 2011.

R. A. Pastrana Sánchez, “Determinación de cómo el alumbrado de la Ciudad Universitaria afecta la calidad del cielo nocturno del OACS,” Rev. Ciencias Espac., vol. 5, no. 1, pp. 6–17, 2012.

I. O. Mockey Coureaux and E. Millan Alvarez, “Metodología para el Estudio de Instalaciones de Alumbrado Viario,” energética, vol. XXIV, no. 2, pp. 59–65, 2003.

T. Markvart, Solar electricity, Second Edition, John Wiley & Sons Inc. pp. 95-98, 2000.



Cómo citar

Cañipa, F., Arnez, F., Ormachea, O., Villazón, A., Rivero, A., Dozio, G. C., & Escobar, E. (2019). SRESLi: SMART RENEWABLE ENERGY STREET LIGHTING SYSTEM. Revista Investigación &Amp; Desarrollo, 19(1).